Briefly, this error occurs when Elasticsearch is unable to automatically determine the mapping for a specific field in the index. This could be due to complex data types or inconsistent data. To resolve this issue, you can explicitly define the mapping for the problematic field in the index settings. Alternatively, you can ensure that the data being indexed is consistent and of a simple data type that Elasticsearch can easily interpret.
In addition we recommend you run the Elasticsearch Template Optimizer to fix problems in your data modeling.
It will analyze your templates to detect issues and improve search performance, reduce indexing bottlenecks and optimize storage utilization. The Template Optimizer is free and requires no installation.
Overview
Mapping is similar to database schemas that define the properties of each field in the index. These properties may contain the data type of each field and how fields are going to be tokenized and indexed. In addition, the mapping may also contain various advanced level properties for each field to define the options exposed by Lucene and Elasticsearch.
You can create a mapping of an index using the _mappings REST endpoint. The very first time Elasticsearch finds a new field whose mapping is not pre-defined inside the index, it automatically tries to guess the data type and analyzer of that field and set its default value. For example, if you index an integer field without pre-defining the mapping, Elasticsearch sets the mapping of that field as long.
Examples
Create an index with predefined mapping:
PUT /my_index?pretty { "settings": { "number_of_shards": 1 }, "mappings": { "properties": { "name": { "type": "text" }, "age": { "type": "integer" } } } }
Create mapping in an existing index:
PUT /my_index/_mapping?pretty { "properties": { "email": { "type": "keyword" } } }
View the mapping of an existing index:
GET my_index/_mapping?pretty
View the mapping of an existing field:
GET /my_index/_mapping/field/name?pretty
Notes
- It is not possible to update the mapping of an existing field. If the mapping is set to the wrong type, re-creating the index with updated mapping and re-indexing is the only option available.
- In version 7.0, Elasticsearch has deprecated the document type and the default document type is set to _doc. In future versions of Elasticsearch, the document type will be removed completely.
How to optimize your Elasticsearch mapping to reduce costs
Watch the video below to learn how to save money on your deployment by optimizing your mapping.
Common problems
- The most common problem in Elasticsearch is incorrectly defined mapping which limits the functionality of the field. For example, if the data type of a string field is set as text, you cannot use that field for aggregations, sorting or exact match filters. Similarly, if a string field is dynamically indexed without predefined mapping, Elasticsearch automatically creates two fields internally. One as a text type for full-text search and another as keyword type, which in most cases is a waste of space.
- Elasticsearch automatically creates an _all field inside the mapping and copies values of each field of a document inside the _all field. This field is used to search text without specifying a field name. Make sure to disable the _all field in production environments to avoid wasting space. Please note that support for the _all field has been removed in version 7.0.
- In versions lower than 5.0, it was possible to create multiple document types inside an index, similar to creating multiple tables inside a database. In those versions, there were higher chances of getting data types conflicts across different document types if they contained the same field name with different data types.
- The mapping of each index is part of the cluster state and is managed by master nodes. If the mapping is too big, meaning there are thousands of fields in the index, the cluster state grows too large to be handled and creates the issue of mapping explosion, resulting in the slowness of the cluster.
Overview
A plugin is used to enhance the core functionalities of Elasticsearch. Elasticsearch provides some core plugins as a part of their release installation. In addition to those core plugins, it is possible to write your own custom plugins as well. There are several community plugins available on GitHub for various use cases.
Examples
Get all of the instructions for the plugin:
sudo bin/elasticsearch-plugin -h
Installing the S3 plugin for storing Elasticsearch snapshots on S3:
sudo bin/elasticsearch-plugin install repository-s3
Removing a plugin:
sudo bin/elasticsearch-plugin remove repository-s3
Installing a plugin using the file’s path:
sudo bin/elasticsearch-plugin install file:///path/to/plugin.zip
Notes and good things to know
- Plugins are installed and removed using the elasticsearch-plugin script, which ships as a part of the Elasticsearch installation and can be found inside the bin/ directory of the Elasticsearch installation path.
- A plugin has to be installed on every node of the cluster and each of the nodes has to be restarted to make the plugin visible.
- You can also download the plugin manually and then install it using the elasticsearch-plugin install command, providing the file name/path of the plugin’s source file.
- When a plugin is removed, you will need to restart every Elasticsearch node in order to complete the removal process.
Common issues
- Managing permission issues during and after plugin installation is the most common problem. If Elasticsearch was installed using the DEB or RPM packages then the plugin has to be installed using the root user. Otherwise you can install the plugin as the user that owns all of the Elasticsearch files.
- In the case of DEB or RPM package installation, it is important to check the permissions of the plugins directory after you install it. You can update the permission if it has been modified using the following command:
chown -R elasticsearch:elasticsearch path_to_plugin_directory
- If your Elasticsearch nodes are running in a private subnet without internet access, you cannot install a plugin directly. In this case, you can simply download the plugins and copy the files inside the plugins directory of the Elasticsearch installation path on every node. The node has to be restarted in this case as well.
Log Context
Log “Failed to deduce mapping for [” classname is SchemaUtil.java.
We extracted the following from Elasticsearch source code for those seeking an in-depth context :
if (Aggregations.isDynamicMapping(destinationMapping)) { logger.debug("Dynamic target mapping set for field [{}] and aggregation [{}]"; targetFieldName; aggregationName); } else if (destinationMapping != null) { targetMapping.put(targetFieldName; destinationMapping); } else { logger.warn("Failed to deduce mapping for [" + targetFieldName + "]; fall back to dynamic mapping."); } }); fieldNamesForGrouping.forEach((targetFieldName; sourceFieldName) -> { String destinationMapping = sourceMappings.get(sourceFieldName);
[ratemypost]