Briefly, this error occurs when Elasticsearch encounters an unexpected issue while processing a source, such as a query or a document. This could be due to a variety of reasons such as incorrect syntax, corrupted data, or a bug in the system. To resolve this issue, you can try the following: 1) Check the syntax of your query or document for any errors. 2) Inspect your data for corruption and fix or remove any corrupted data. 3) Update Elasticsearch to the latest version to fix any potential bugs. 4) Check the Elasticsearch logs for more detailed error information.
This guide will help you check for common problems that cause the log ” unexpected failure during [” + source + “] ” to appear. To understand the issues related to this log, read the explanation below about the following Elasticsearch concepts: source, cluster, admin.
Overview
When a document is sent for indexing, Elasticsearch indexes all the fields in the format of an inverted index, but it also keeps the original JSON document in a special field called _source.
Examples
Disabling source field in the index:
PUT /api-logs?pretty { "mappings": { "_source": { "enabled": false } } }
Store only selected fields as a part of _source field:
PUT api-logs { "mappings": { "_source": { "includes": [ "*.count", "error_info.*" ], "excludes": [ "error_info.traceback_message" ] } } }
Including only selected fields using source filtering:
GET api-logs/_search { "query": { "match_all": {} }, "_source": { "includes": ["api_name","status_code", "*id"] } }
Notes
The source field brings an overhead of extra storage space but serves special purposes such as:
- Return as a part of the response when a search query is executed.
- Used for reindexing purpose, update and update_by_query operations.
- Used for highlighting, if the field is not stored, it means the field is not set as “store to true” inside the mapping.
- Allows selection of fields to be returned.
The only concern with source field is the extra storage usage on disk. But this storage space used by source field can be optimized by changing compression level to best_compression. This setting is done using index.codec parameter.
Overview
An Elasticsearch cluster consists of a number of servers (nodes) working together as one. Clustering is a technology which enables Elasticsearch to scale up to hundreds of nodes that together are able to store many terabytes of data and respond coherently to large numbers of requests at the same time.
Search or indexing requests will usually be load-balanced across the Elasticsearch data nodes, and the node that receives the request will relay requests to other nodes as necessary and coordinate the response back to the user.
Notes and good things to know
The key elements to clustering are:
Cluster State – Refers to information about which indices are in the cluster, their data mappings and other information that must be shared between all the nodes to ensure that all operations across the cluster are coherent.
Master Node – Each cluster must elect a single master node responsible for coordinating the cluster and ensuring that each node contains an up-to-date copy of the cluster state.
Cluster Formation – Elasticsearch requires a set of configurations to determine how the cluster is formed, which nodes can join the cluster, and how the nodes collectively elect a master node responsible for controlling the cluster state. These configurations are usually held in the elasticsearch.yml config file, environment variables on the node, or within the cluster state.
Node Roles – In small clusters it is common for all nodes to fill all roles; all nodes can store data, become master nodes or process ingestion pipelines. However as the cluster grows, it is common to allocate specific roles to specific nodes in order to simplify configuration and to make operation more efficient. In particular, it is common to define a limited number of dedicated master nodes.
Replication – Data may be replicated across a number of data nodes. This means that if one node goes down, data is not lost. It also means that a search request can be dealt with by more than one node.
Common problems
Many Elasticsearch problems are caused by operations which place an excessive burden on the cluster because they require an excessive amount of information to be held and transmitted between the nodes as part of the cluster state. For example:
- Shards too small
- Too many fields (field explosion)
Problems may also be caused by inadequate configurations causing situations where the Elasticsearch cluster is unable to safely elect a Master node. This situation is discussed further in:
Backups
Because Elasticsearch is a clustered technology, it is not sufficient to have backups of each node’s data directory. This is because the backups will have been made at different times and so there may not be complete coherency between them. As such, the only way to backup an Elasticsearch cluster is through the use of snapshots, which contain the full picture of an index at any one time.
Cluster resilience
When designing an Elasticsearch cluster, it is important to think about cluster resilience. In particular – what happens when a single node goes down? And for larger clusters where several nodes may share common services such as a network or power supply – what happens if that network or power supply goes down? This is where it is useful to ensure that the master eligible nodes are spread across availability zones, and to use shard allocation awareness to ensure that shards are spread across different racks or availability zones in your data center.
Log Context
Log “unexpected failure during [” + source + “]” classname is TransportClusterHealthAction.java.
We extracted the following from Elasticsearch source code for those seeking an in-depth context :
); } @Override public void onFailure(Exception e) { logger.error(() -> "unexpected failure during [" + source + "]"; e); listener.onFailure(e); } }.submit(clusterService.getMasterService(); source); } else { final TimeValue taskTimeout = TimeValue.timeValueMillis(Math.max(0; endTimeRelativeMillis - threadPool.relativeTimeInMillis()));
[ratemypost]