Briefly, this error occurs when Elasticsearch is unable to establish a connection with a remote cluster, identified by the ‘clusterAlias’. This could be due to network issues, incorrect cluster settings, or the remote cluster being down. To resolve this, ensure the remote cluster is up and running, check the network connectivity between the clusters, and verify the cluster settings, particularly the ‘clusterAlias’. Also, check the Elasticsearch logs for more detailed error information.
This guide will help you check for common problems that cause the log ” error while communicating with remote cluster [” + clusterAlias + “] ” to appear. To understand the issues related to this log, read the explanation below about the following Elasticsearch concepts: alias, search, cluster.
Overview
Search refers to the searching of documents in an index or multiple indices. The simple search is just a GET API request to the _search endpoint. The search query can either be provided in query string or through a request body.
Examples
When looking for any documents in this index, if search parameters are not provided, every document is a hit and by default 10 hits will be returned.
GET my_documents/_search
A JSON object is returned in response to a search query. A 200 response code means the request was completed successfully.
{ "took" : 1, "timed_out" : false, "_shards" : { "total" : 2, "successful" : 2, "failed" : 0 }, "hits" : { "total" : 2, "max_score" : 1.0, "hits" : [ ... ] } }
Notes and good things to know
- Distributed search is challenging and every shard of the index needs to be searched for hits, and then those hits are combined into a single sorted list as a final result.
- There are two phases of search: the query phase and the fetch phase.
- In the query phase, the query is executed on each shard locally and top hits are returned to the coordinating node. The coordinating node merges the results and creates a global sorted list.
- In the fetch phase, the coordinating node brings the actual documents for those hit IDs and returns them to the requesting client.
- A coordinating node needs enough memory and CPU in order to handle the fetch phase.
Overview
An Elasticsearch cluster consists of a number of servers (nodes) working together as one. Clustering is a technology which enables Elasticsearch to scale up to hundreds of nodes that together are able to store many terabytes of data and respond coherently to large numbers of requests at the same time.
Search or indexing requests will usually be load-balanced across the Elasticsearch data nodes, and the node that receives the request will relay requests to other nodes as necessary and coordinate the response back to the user.
Notes and good things to know
The key elements to clustering are:
Cluster State – Refers to information about which indices are in the cluster, their data mappings and other information that must be shared between all the nodes to ensure that all operations across the cluster are coherent.
Master Node – Each cluster must elect a single master node responsible for coordinating the cluster and ensuring that each node contains an up-to-date copy of the cluster state.
Cluster Formation – Elasticsearch requires a set of configurations to determine how the cluster is formed, which nodes can join the cluster, and how the nodes collectively elect a master node responsible for controlling the cluster state. These configurations are usually held in the elasticsearch.yml config file, environment variables on the node, or within the cluster state.
Node Roles – In small clusters it is common for all nodes to fill all roles; all nodes can store data, become master nodes or process ingestion pipelines. However as the cluster grows, it is common to allocate specific roles to specific nodes in order to simplify configuration and to make operation more efficient. In particular, it is common to define a limited number of dedicated master nodes.
Replication – Data may be replicated across a number of data nodes. This means that if one node goes down, data is not lost. It also means that a search request can be dealt with by more than one node.
Common problems
Many Elasticsearch problems are caused by operations which place an excessive burden on the cluster because they require an excessive amount of information to be held and transmitted between the nodes as part of the cluster state. For example:
- Shards too small
- Too many fields (field explosion)
Problems may also be caused by inadequate configurations causing situations where the Elasticsearch cluster is unable to safely elect a Master node. This situation is discussed further in:
Backups
Because Elasticsearch is a clustered technology, it is not sufficient to have backups of each node’s data directory. This is because the backups will have been made at different times and so there may not be complete coherency between them. As such, the only way to backup an Elasticsearch cluster is through the use of snapshots, which contain the full picture of an index at any one time.
Cluster resilience
When designing an Elasticsearch cluster, it is important to think about cluster resilience. In particular – what happens when a single node goes down? And for larger clusters where several nodes may share common services such as a network or power supply – what happens if that network or power supply goes down? This is where it is useful to ensure that the master eligible nodes are spread across availability zones, and to use shard allocation awareness to ensure that shards are spread across different racks or availability zones in your data center.
Log Context
Log “error while communicating with remote cluster [” + clusterAlias + “]” class name is TransportSearchAction.java. We extracted the following from Elasticsearch source code for those seeking an in-depth context :
abstract FinalResponse createFinalResponse(); } private static RemoteTransportException wrapRemoteClusterFailure(String clusterAlias; Exception e) { return new RemoteTransportException("error while communicating with remote cluster [" + clusterAlias + "]"; e); } static MapgetIndicesFromSearchContexts(SearchContextId searchContext; IndicesOptions indicesOptions) { final Map > indices = new HashMap<>(); for (Map.Entry entry : searchContext.shards().entrySet()) {
[ratemypost]